A broadening view of recombinational DNA repair in bacteria.

نویسنده

  • M M Cox
چکیده

Recombinational DNA repair is both the most complex and least understood of DNA repair pathways. In bacterial cells grown under normal laboratory conditions (without a DNA damaging treatment other than an aerobic environment), a substantial number (10-50%) of the replication forks originating at oriC encounter a DNA lesion or strand break. When this occurs, repair is mediated by an elaborate set of recombinational DNA repair pathways which encompass most of the enzymes involved in DNA metabolism. Four steps are discussed: (i) The replication fork stalls and/or collapses. (ii) Recombination enzymes are recruited to the location of the lesion, and function with nearly perfect efficiency and fidelity. (iii) Additional enzymatic systems, including the phiX174-type primosome (or repair primosome), then function in the origin-independent reassembly of the replication fork. (iv) Frequent recombination associated with recombinational DNA repair leads to the formation of dimeric chromosomes, which are monomerized by the XerCD site-specific recombination system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombinational DNA repair of damaged replication forks in Escherichia coli: questions.

It has recently become clear that the recombinational repair of stalled replication forks is the primary function of homologous recombination systems in bacteria. In spite of the rapid progress in many related lines of inquiry that have converged to support this view, much remains to be done. This review focuses on several key gaps in understanding. Insufficient data currently exists on: (a) th...

متن کامل

Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda.

Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repa...

متن کامل

Repair and antirepair DNA helicases in Helicobacter pylori.

Orthologs of RecG and RuvABC are highly conserved among prokaryotes; in Escherichia coli, they participate in independent pathways that branch migrate Holliday junctions during recombinational DNA repair. RecG also has been shown to directly convert stalled replication forks into Holliday junctions. The bacterium Helicobacter pylori, with remarkably high levels of recombination, possesses RecG ...

متن کامل

Loss of DNA recombinational repair enzymes in the initial stages of genome degeneration.

Many obligate intracellular pathogens and symbionts undergo genome degeneration during long-term association with eukaryotic hosts; however, very little is known about genome changes that occur in the initial stages of such intracellular associations. By focusing on a clade of bacteria that have recently established symbiotic associations with insect hosts, we have identified events that may co...

متن کامل

Recombinational DNA Repair in Bacteria: Postreplication

Deoxyribonucleic acid (DNA) damage is a common occurrence in all cells. A bacterial cell growing in an aerobic environment will suffer 3000–5000 DNA lesions per cell per generation (most of them oxidative in origin). Most of this damage is faithfully repaired by specialized DNA repair systems; however, replication forks will occasionally encounter unrepaired DNA lesions. Because DNA polymerase ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes to cells : devoted to molecular & cellular mechanisms

دوره 3 2  شماره 

صفحات  -

تاریخ انتشار 1998